

Stellar Mass-Halo Mass Relation to the second order

KAI WANG | 王凯 ICC & CEA, Durham University

based on

- arXiv: 2304.07189 KW et al. 2023
- arXiv: 2408.07743 KW & Peng 2024

20241008 - Mock Barcelona

scan me!

Stellar mass-halo mass relation

11

12

rang+2003, van den Bosch+2003, Lin&Mohr2004, Mandelbaum+2006, Zheng+2007, Gavazzi+2007, Hansen+2009, Wang&Jing2010, Moster+2010, 2013, 2018, Guo+2010, Klypin+2010, Behroozi+2010, 2013, 2019, Mo+2024 etc.

at the **high-mass end**, possibly from AGN feedback & inefficient cooling

Stellar mass-halo mass relation for red and blue galaxies

sensitive to galaxy formation physics Stellar Mass

Halo Mass mostly determined by ΛCDM

Stellar mass-halo mass relation for red and blue galaxies

Halo Mass

mostly determined by ΛCDM

At fixed halo mass, star-forming galaxies are more massive than **Steffar Matsgalaxies.** Halo Assembly Quenching

Central stellar mass as a proxy of halo formation time

Halos formed ~10 Gyrs ago:

 $M_{
m halo}\,{=}\,10^{13.4}h^{\,{-1}}{
m M}_{\,\odot}$ $\overline{t_{\mathrm{form}}} = 8.2 \mathrm{Gyr}$

 $M_{
m halo} = 10^{13.5} h^{-1} {
m M}_{\odot}$ $t_{
m form} = 10.0
m Gyr$

substructure fraction of

 \sim

Halos formed ~2 Gyrs ago:

 $M_{
m halo}\,{=}\,10^{13.6}h^{\,-1}{
m M}_{\,\odot}$ $t_{\rm form} = 1.6 {
m Gyr}$

 $M_{
m halo}\,{=}\,10^{13.5}h^{\,-1}{
m M}_{\,\odot}$ $t_{
m form}\,{=}\,2.7{
m Gyr}$

Wang et al. 2011

Halo Formation Time in redshift

hy-formed halos ==> have more time to cannibalize their substruct res, ==> thus have less upstructures and more dominanting

Central stellar mass as a proxy of halo formation time

- Halos with more massive central galaxies are formed earlier.
- Central SMHMR is a valid proxy for halo formation time.
- ◆Similar results in
 - EAGLE (Matthee et al. 2017, Correa et al. 2020)
 - IllustrisTNG (Bose et al. 2019, Martizzi et al. 2020)
 - SAM (Zehavi et al. 2018)
 - UniverseMachine (Bradshaw et al. 2020)

Halo assembly history relates to central quenching and morphology

Apply to **SDSS MGS** with Yang's Group Catalog with **GSWLC M*** and SFR with Galaxy Zoo morphology

Central galaxies in early-formed halos are more star-forming and more spiral-like.

Comparison with galaxy formation models

Stellar conversion efficiency in galaxy formation models

✓ All models reproduce the same halo distribution and assembly history.
 ✓ All models reproduce the stellar mass function and SFR distribution.
 ✗ The relation betweem halo assembly and star formation must be different!

Tracing the evolution of galaxies in galaxy formation models

• Selecting ~ $10^{12}h^{-1}M_{\odot}$ halos

Halo assembly history
 Stellar growth history
 Star formation history

* L-GALAXIES:
 Weak correlation between
 quenching and halo assembly
 history

* TNG/Illustris/EAGLE: Quenched galaxies prefer to live in early-formed halos

• Tracing the evolution of galaxies

• Selecting ~ $10^{12}h^{-1}M_{\odot}$ halos

(1) Halo assembly history 2 Stellar growth history **3** Star formation history Quenching Stellar growth suppression

* L-GALAXIES: Star-forming galaxies are more massive.

* TNG/Illustris/EAGLE: Star-forming galaxies are equally massive as quiescent galaxies.

• Tracing the evolution of galaxies

• Selecting ~ $10^{12}h^{-1}M_{\odot}$ halos

Halo assembly history Stellar growth history Star formation history

early-formed halos ↓ higher progenitor SFR

Implications for galaxy-halo co-evolution

KW & Peng

SUMMARY: Stellar Mass-Halo Mass Relation to the second order

- The stellar mass-halo mass relation has taught us a lot on galaxy formation and evolution, and we expect to learn more from the secondary relation.
- Converging obervational evidences show that star-forming galaxies convert baryons into stars more efficiently than quiescent galaxies, at fixed stellar mass/halo mass.
- Different theoretical models all suggest that early-formed halos host more massive centrals, making the central stellar-to-halo mass ratio a robust proxy for halo formation time.
- Early-formed halos prefer to host star-forming and spiral-like central galaxies, with the stellar-to-halo mass ratio as a proxy of halo formation time.
- EAGLE, Illustris & TNG fail to reproduce observation since they let quiescent galaxies more likely to live in early-formed halos.

visit WWW.KosmosWalker.com for mo

