

Intrinsic mass-richness relation of clusters in THE THREE HUNDRED hydrodynamic simulations

Mingjing Chen supervisor: Wenjuan Fang

Iniversity of Science and Technology of China

Outline

Background

- Cluster of galaxies
- Mass richness (MR) relation
- Halo occupation distribution (HOD)

• Model

Data

- The Three Hundred
- Cluster catalogue

- MR relation using galaxy stellar mass
- MR relation using galaxy magnitude

Discussions

- comparison with other models
- 7-parameters relation
- comparison with previous work

Conclusions

Background — Cluster of galaxies

Cosmology

- Cluster abundance N(M, z)
- Cluster power spectrum
- Cluster stacked lensing

Galaxy formation and evolution

- Central galaxy
 - Brighter, redder, and more concentrated centrals reside in more massive clusters
- Satellite galaxy
 - Baryonic process: harassment, ram-pressure stripping, tidal stripping, dynamical friction, and strangulation

Individual cluster

- 1. Dynamics
 - Assumption: dynamical equilibrium
 - galaxy number density profile $\nu(r)$, galaxy velocity dispersion $\sigma(r)$
- 2. X-ray
 - Assumption: hydrostatic equilibrium
 - Gas density profile n(r), gas temperature pro-
- 3. Lensing
 - No assumptions
 - Shear profile $\gamma(\theta)$

require high-quality or long-term spectral observations

direct observables as mass proxies mass-observable relation

$$M(r) = -\frac{r\sigma^2(r)}{G} \left[\frac{d\ln\sigma^2(r)}{d\ln r} + \frac{d\ln\nu(r)}{d\ln r} + \frac{d\ln r}{d\ln r} \right]$$

ofile
$$T(r)$$
 $M(r) = -\frac{rkT(r)}{G\mu m_p} \left[\frac{d \ln n(r)}{d \ln r} + \frac{d \ln T(r)}{d \ln r} \right]$

Background — Cluster(halo) mass (前 中国 神 圣 本 本 李

Mass proxies

- X-ray:
 - Gas mass M_{gas}
 - Gas temperature, luminosity T_X, L_X \bullet
 - Integrated Y_X
- Millimeter:
 - Integrated SZ flux Y_{SZ}
- Optical:
 - Galaxy overdensity
 - Luminosity *L*
 - Richness λ

X-ray wavelengths

Optical wavelengths

Millimeter wavelengths

Fig. Abell 1835 cluster

Background — MR relation

• Power-law

$$\langle \ln \lambda | \ln M \rangle = A + B \ln \left(\frac{M}{M_{piv}} \right)$$

Richness PDF $P(\lambda \mid M)$

Probability Distribution Function

• Log-normal

$$P(\ln \lambda | \ln M) = \frac{1}{\sqrt{2\pi}\sigma_{\ln \lambda | \ln M}} \exp \left[-\frac{(\ln \lambda - \langle \ln \lambda | \ln M \rangle)}{2\sigma_{\ln \lambda | \ln M}} \sigma_{\ln \lambda} \sim M? \right]$$

Mass Richness relation

Background — MR relation

Scatter $\sigma_{\ln \lambda}$

1. Simple linear relation

$$\sigma_{\ln\lambda} = \sigma_0 + q \ln\left(\frac{M}{M_p}\right)$$

Murata+2018(SDSS), Murata+2019(HSC)

Intrinsic scatter + Poisson term

$$\sigma_{\ln\lambda}^2 = \sigma_{IG}^2 + \frac{e^{\langle \ln\lambda\rangle} - 1}{e^{2\langle \ln\lambda\rangle}}$$

Capasso+2019(ROSITA), Bleem+2020(SPT), Costanzi+2021(DES+SPT), To+2021(DES)

Mass Richness relation

Background — HOD Halo Occupation Distribution

 $\langle \lambda | M \rangle$ - 5 parameters

• Central - 2 parameters $\{M_{min}, \sigma_{\log M}\}$

$$\langle \lambda^{cen} | M \rangle = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\log M - \log M_{min}}{\sigma_{\log M}} \right) \right]$$

• Satellite - 3 parameters $\{M_{cut}, M_1^*, \alpha\}$

$$\left\langle \lambda^{sat} \left| M \right\rangle = \left(\frac{M - M_{cut}}{M_1^*} \right)^{\alpha}$$

 $P(\lambda^{sat} | M)$ - Sub-Poisson, Poisson, Super-Poisson

• Super-Poisson at large mass σ_P Poisson scatter: statistics of halo merger histories, σ_I Super, intrinsic scatter: halo-to-halo scatter arises from variance in the large-scale environments of the host haloes

Contreras +2017

Mean relation $\lambda(M)$

• Power-law

 $\langle \ln \lambda | \ln M \rangle = A + B \ln \left(M/M_{piv} \right)$

Richness PDF $P(\lambda \mid M)$ Probability Distribution Function \mathbb{N} Log-normal $P(\ln \lambda \mid \ln M) = \frac{1}{\sqrt{2\pi}\sigma_{\ln \lambda \mid \ln M}} \exp\left[-\frac{(\ln \lambda - \langle \ln \lambda \mid \ln M \rangle)^2}{2\sigma_{\ln \lambda \mid \ln M}^2}\right]$

 $\mathbf{M}P(\lambda \mid M)$ a convolution of a Poisson σ_P distribution with a Gaussian σ_I distribution.

• no analytic closed form

- power-law
- Super-Poisson
 - Model σ_I as Gaussian

Contreras +2017

Mean relation $\lambda(M)$

• Power-law

 $\langle \ln \lambda | \ln M \rangle = A + B \ln \left(M/M_{piv} \right)$

Richness PDF $P(\lambda \mid M)$ **Probability Distribution Function** 🔀 Log-normal $P(\ln \lambda | \ln M) = \frac{1}{\sqrt{2\pi\sigma_{\ln \lambda | \ln M}}} \exp \left[-\frac{(\ln \lambda - \langle \ln \lambda | \ln M \rangle)^2}{2\sigma_{\ln \lambda | \ln M}^2} \right]$

 $\mathbf{M} P(\lambda \mid M)$ a convolution of a Poisson σ_P distribution with a Gaussian σ_I distribution.

• no analytic closed form

Mean relation $\lambda(M)$

• Power-law

 $\langle \ln \lambda | \ln M \rangle = A + B \ln \left(M/M_{piv} \right)$

Richness PDF $P(\lambda \mid M)$ **Probability Distribution Function** 🔀 Log-normal $P(\ln \lambda | \ln M) = \frac{1}{\sqrt{2\pi\sigma_{\ln \lambda} | \ln M}} \exp \left[-\frac{(\ln \lambda - \langle \ln \lambda | \ln M \rangle)^2}{2\sigma_{\ln \lambda}^2 | \ln M} \right]$

 $\mathbf{M} P(\lambda \mid M)$ a convolution of a Poisson σ_P distribution with a Gaussian σ_I distribution.

- no analytic closed form
- use a skewed Gaussian function to fit it.

• use a skewed Gaussian function to fit it

Mean relation $\lambda(M)$

• Power-law

 $\langle \ln \lambda | \ln M \rangle = A + B \ln \left(M/M_{piv} \right)$

Richness PDF $P(\lambda \mid M)$ **Probability Distribution Function** 🔀 Log-normal $P(\ln \lambda | \ln M) = \frac{1}{\sqrt{2\pi}\sigma_{\ln \lambda | \ln M}} \exp\left[-\frac{(\ln \lambda - \langle \ln \lambda | \ln M \rangle)^2}{2\sigma_{\ln \lambda | \ln M}^2}\right] \quad 1. \text{ Simple linear relation: } \sigma_{\ln \lambda} = \sigma_0 + q \ln\left(M/M_p\right)$ $2. \text{ Intrinsic scatter + Poisson term : } \sigma_{\ln \lambda}^2 = \sigma_{IG}^2 + \frac{e^{\langle \ln \lambda \rangle} - 1}{e^{2\langle \ln \lambda \rangle}}$

Skewed Gaussian

$$P(\lambda \mid M) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(\lambda - \langle \lambda^{sat} \mid M \right)^2}{2\sigma^2}} \operatorname{erfc} \left[-\alpha \frac{\lambda - \langle \lambda^{sat} \mid M \rangle}{\sqrt{2\sigma^2}} \right]$$

3 parameters: $\{A, B, \sigma_I\}$

3. Intrinsic scatter: σ_I

Data — The Three Hundred

• The most massive $(M > 8 \times 10^{14} h^{-1} M_{\odot})$ 324 clusters are selected from the MultiDark simulation(MDPL2)

MDPL2: DM-only, 1 $h^{-1}Gpc$, 3840³ DM, m_{I}

$$m_{DM} + m_{gas} = 1.5 \times 10^9 \ h^{-1} M_{\odot} \ \Omega_M = 0.307, \Omega_b = 0$$
$$m_{DM} = 12.7 \times 10^8 \ h^{-1} M_{\odot}, m_{gas} = 2.36 \times 10^8 \ h^{-1} M_{\odot}$$

hydrodynamical simulations with baryonic models: GADGET-X: calibrated based on gas properties GIZMO-SIMBA: calibrated based on the stellar properties

$$_{DM} = 1.5 \times 10^9 \ h^{-1} M_{\odot}$$

• 324 zoomed-in initial conditions are generated by cutting a spherical region with a radius of 15 $h^{-1}Mpc$

).048

Data — Catalogue

- 324 regions
- Redshift: z = 0, 0.5, 1, 1.5
- Halo finder: AHF (SO)
 - Cluster mass: $M \equiv M_{200c}$
- Galaxy finder: Caesar (6DFOF)
 - Galaxy stellar mass: M_{\star}
 - Galaxy absolute magnitude *M* in different bands:
 - CSST i-band: \mathcal{M}_i
 - **Chinese Space Station Telescope** • CSST z-band: *M*
 - Euclid h-band: \mathcal{M}_h a European Space Agency mission
- Cumulative satellite stellar mass function $\Phi(M_{\star})$
 - GADGET-X and GIZMO-SIMBA are more consistent at small M_{\star}

Cumulative satellite stellar mass function $\Phi(M_{\star})$

Data — Catalogue

- 324 regions
- Redshift: z = 0, 0.5, 1, 1.5
- Halo finder: AHF (SO) $\sim \lambda > 10$
 - Cluster mass: $M \equiv M_{200c} \gtrsim 5 \times 10^{13} \sim 6 \times 10^{14} \ h^{-1} M_{\odot}$
- Galaxy finder: Caesar (6DFOF)
 - Galaxy stellar mass: $M_{\star} \ge 10^{9.5} h^{-1} M_{\odot}$ Resolution
 - Galaxy absolute magnitude *M* in different bands:
 - CSST i-band: \mathcal{M}_i
 - **Chinese Space Station Telescope** • CSST z-band: \mathcal{M}_{7}
 - Euclid h-band: \mathcal{M}_h a European Space Agency mission
- Richness Definition: λ \bullet the count of member galaxies selected by:
 - *M*_{*}
- M 18

Results — MR relation using M_{\star}

Results — MR relation using M_{\star}

Power-law: $\langle \ln \lambda | \ln M \rangle = A + B \ln \left(M/M_{piv} \right)$ Skewed Gaussian PDF: σ_I ▶ 3 params $\{A, B, \sigma_I\}$

- Stellar mass range: $\log M_{\star} = [9.5, 10.5]$
- Redshift range: z = [0, 0.5, 1, 1.5]
- 1. σ_I is mass independent
- 2. $M_{\star} \gtrsim 10^{10} h^{-1} M_{\odot}$, the behavior of parameters is influenced by the baryon models.
- 3. $M_{\star} \lesssim 10^{10} h^{-1} M_{\odot}$

$$A \to A_0 + A_z(z) \uparrow + A_\star(M_\star) \downarrow$$

$$B \to B_0 + B_z(z) \downarrow$$

$$\sigma_I \to \sigma_{I0} + \sigma_z(z) \uparrow$$

 σ_I is independent on M and $M_{\star} =>$ large-scale environments.

²¹ GIZMO-SIMBA,
$$\sigma_I \sim 0$$

 10^{15}

Results — MR relation using M

Whether the above results suitable for different surveys?

- Actual observations: the apparent magnitude *m*
 - Absolute apparent magnitude : $\mathcal{M} = m - 5 \log(D_L/10pc)$
- Different survey, different bands:
 - CSST i-band \mathcal{M}_i
 - CSST z-band \mathcal{M}_z
 - Euclid h-band \mathcal{M}_h

Fig. 1. Set of transmission curves $\mathcal{T} = \{ugrizY_E J_E H_E\}$ used for the *Euclid* mission (from left to right). The *ugriz* passbands are only fiducial, since different sets will be used by *Euclid*; those represented here are from SDSS. The $Y_E J_E H_E$ passbands are from NISP on board *Euclid*. Only the filter transmissions are shown, without atmospheric, telescope, and detector quantum efficiency effects.

700

Results — MR relation using *M*

CSST i-band

1. use \mathcal{M}_i to select galaxies --- \mathcal{M}_i

use M_{\star} to select galaxies \blacksquare M_{\star} Convert \mathcal{M}_i to M_{\star} Stellar mass-magnitude relation $\ln M_{\star} = 4.63 - 0.91 \mathcal{M}_i - 1.30 \times \ln(1+z)$ $\{A, B\} \sim 5\%$ $\sigma_I \times 1.5$ diff. 0.05 0.00 frac. -18

Results — MR relation using *M*

fra

frac.

Other bands

• Stellar mass-magnitude relation $\ln M_{\star} = 4.57 - 0.90 \mathcal{M}_{z} - 1.20 \times \ln(1+z)$ $\ln M_{\star} = 4.68 - 0.88 \mathcal{M}_{h} - 1.00 \times \ln(1+z)$

•
$$\{A, B\} \sim 5\%$$

• $\sigma_I \times 1.5$

We can use

(1) the MR relation selected by M_{\star} and (2) the different $M_{\star} - \mathcal{M}_{i,z,h,\dots}$ relations, to forecast for different surveys/bands.

Discussions — richness PDF

$$\Box \text{Log-normal}$$

$$P(\ln \lambda | \ln M) = \frac{1}{\sqrt{2\pi}\sigma_{\ln \lambda | \ln M}} \exp\left[-\frac{(\ln \lambda - \langle \ln \lambda | \ln M \rangle)^2}{2\sigma_{\ln \lambda | \ln M}^2}\right]$$

Skewed Gaussian

$$P(\lambda \mid M) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(\lambda - \langle \lambda^{sat} \mid M \right)^2}{2\sigma^2}} \operatorname{erfc} \left[-\alpha \frac{\lambda - \langle \lambda^{sat} \mid M \rangle}{\sqrt{2\sigma^2}} \right]$$

1. Log-normal

- 1.1.Simple linear relation: $\sigma_{\ln \lambda} = \sigma_0 + q \ln \left(M/M_p \right)$
- 1.2.Intrinsic scatter + Poisson term : $\sigma_{\ln\lambda}^2 = \sigma_{IG}^2 + \frac{e^{\langle \ln\lambda\rangle} - 1}{e^{2\langle \ln\lambda\rangle}}$
- Skewed Gaussian

2.1.Intrinsic scatter: σ_I

1. Log-normal v.s. Skewed Gaussian

- $\log M[h^{-1}M_{\odot}] = [13.6, 13.7]$
 - Residual: 9.96>5.34
 - the skewed Gaussian function better incorporates lowrichness values

- $\log M[h^{-1}M_{\odot}] = [14.8, 14.9]$
 - Residual: 31.0>29.9
 - the two functions exhibit greater consistency in the larger mass bin

Discussions — richness PDF

1.1 Log-normal: $\sigma_{\ln \lambda} = \sigma_0 + q \ln \left(M/M_p \right)$

- { A, B, σ_0, q } v.s. { A, B, σ_I } more parameters
- $\sigma_0(M_{\star})$ intricate scatter

1.2 Log-normal: $\sigma_{\ln \lambda}^2 = \sigma_{IG}^2 + \frac{e^{\langle \ln \lambda \rangle}}{e^{2 \langle \ln \lambda \rangle}}$

- motivated by the super-Poisson distribution in the HOD model
 - σ_I is mass-independent
 - $\sigma_{IG}(M)$?
- Sampling: 1.
 - select $\langle \lambda^{sat} \rangle$, $\sigma_I \implies$ sample 10⁶ $\lambda \implies$ calculate $\sigma_{\ln \lambda}$, $\langle \ln \lambda \rangle$ /1- 1

$$\Rightarrow \text{ calculate } \sigma_{IG}^2 = \sigma_{\ln \lambda}^2 - \frac{e^{\langle \ln \lambda \rangle} - 1}{e^{2 \langle \ln \lambda \rangle}}$$

- σ_{IG} is mass-dependent
- $\sigma_{IG} > \sigma_I$

$$|\rangle - 1$$

$$(\ln \lambda)$$

1.2 Log-normal: $\sigma_{\ln \lambda}^2 = \sigma_{IG}^2 + \frac{e^{\langle \ln \lambda \rangle} - 1}{e^{2 \langle \ln \lambda \rangle}}$

- motivated by the super-Poisson distribution in the HOD model
 - σ_I is mass-independent
 - $\sigma_{IG}(M)$?
- Sampling: 1.
 - σ_{IG} is mass-dependent, $\sigma_{IG} > \sigma_I$
- 2. Data:
 - select $[M, M + \Delta M] \implies$ a set of $\lambda \implies$ calculate $\sigma_{\ln \lambda}, \langle \ln \lambda \rangle$

$$\Rightarrow \text{ calculate } \sigma_{IG}^2 = \sigma_{\ln \lambda}^2 - \frac{e^{\langle \ln \lambda \rangle} - 1}{e^{2 \langle \ln \lambda \rangle}}$$

- GIZMO-SIMBA: $\sigma_{IG} \sim 0$
- GADGET-X: σ_{IG} is mass dependent, $\sigma_{IG} > \sigma_{I}$

$$|\rangle - 1$$

1.2 Log-normal: $\sigma_{\ln \lambda}^2 = \sigma_{IG}^2 + \frac{e^{\langle \ln \lambda \rangle} - 1}{e^{2 \langle \ln \lambda \rangle}}$

- motivated by the super-Poisson distribution in the HOD model $\mathrm{e}^{\langle \ln\lambda
 angle -1}/\mathrm{e}^{2\langle \ln\lambda
 angle}$ 0.3 • σ_I is mass-independent $\sigma^{z}_{\ln\lambda}$ • $\sigma_{IG}(M)$? 0.2 0.4 0.1 ۵.3^۲ مالط 0.0 0.2 GADGET-X GIZMO-SIMBA 0.040.1 0.02 0.0 diff. 0.25 $\sigma_{\rm I} = 0.10$ 0.00 aC 0.00 10² $10^3 0.02$ f 10^{1} 10^{0} 10^{14} 10^{13} 10^{15} $\langle \lambda^{\,\mathrm{sat}}
 angle + 1$ ${
 m M}[{
 m h}^{-1}{
 m M}_{\odot}]$

 σ_{IG} is mass-dependent. Overlook this dependence will overestimate the scatter.

To compare with other papers, we overlook it.

Data

Discussions — 7-parameters

3 params -> 7

• Skew Gaussian

$$\begin{split} A \to A_0 + A_z \times \ln \frac{1+z}{1+z_p} + A_\star \times \ln \frac{M_\star}{M_{\star p}} \\ B \to B_0 + B_z \times \ln \frac{1+z}{1+z_p} \\ \sigma_{\rm I} \to \sigma_{I0} + \sigma_z \times \ln \frac{1+z}{1+z_p}, \end{split}$$

• Log-normal

$$\begin{split} A \to A_0 + A_z \times \ln \frac{1+z}{1+z_p} + A_\star \times \ln \frac{M_\star}{M_{\star p}} \\ B \to B_0 + B_z \times \ln \frac{1+z}{1+z_p} \\ \sigma_{\rm IG} \to \sigma_{IG0} + \sigma_z \times \ln \frac{1+z}{1+z_p}, \end{split}$$

Table 1. The 7 fitting parameters for GADGET-X. The upper panel displays the results obtained using the skewed Gaussian distribution, while the lower panel shows the results obtained using the log-normal distribution. Each column corresponds to a different redshift range. Fitting errors smaller than 10% have been omitted for a cleaner presentation.

z	[0,1]	[0, 0.5]	[0.5, 1]	[1,
A_0	3.792	3.803	3.800	3.
A_z	0.205	0.245	0.150	-0.01
A_{\star}	-0.320	-0.319	-0.323	-0.
B_0	0.980	0.981	0.980	0.
B_z	-0.031	-0.042	-0.060	-0.
σ_{I0}	0.060	0.059	0.059	0.
σ_z	$0.008\substack{+0.001\\-0.001}$	$0.008\substack{+0.002\\-0.002}$	$0.009\substack{+0.002\\-0.002}$	0.029
A_0	3.819	3.833	3.829	3.
A_z	0.196	0.244	0.128	-0.02
A_{\star}	-0.314	-0.313	-0.316	-0.
B_0	0.957	0.959	0.958	0.
B_z	-0.044	-0.056	-0.084	-0.
σ_{IG0}	0.067	0.063	0.063	0.
σ_z	0.019	$0.011\substack{+0.002\\-0.002}$	0.026	0.021

DISCUSSIONS — comparison with previous work

- Apparent absolute magnitude : $\mathcal{M}_i = m_i 5 \log(D_L/10pc)$
- Stellar mass abs magnitude: $\ln M_{\star} = 4.63 0.91 \mathcal{M}_i 1.30 \times \ln(1+z)$
- Stellar mass threshold result: 7 parameters $\{A_0, A_7, A_{\star}, B_0, B_7, \sigma_{IG0}, \sigma_7\}$ 3.

redMaPPer $0.2L_* \Rightarrow m_i = 22, \mathcal{M}_i = -21.29$

Capasso 2019: Chiu 2023: Bleem 2020: Costanzi 2021: Murata 2019:

X-ray, ROSAT, X-ray, eROSITA, SZ, SPT, optical, DES, optical, HSC,

galaxy dynamics number counts(NC) NC NC NC

Pivot point M = 3e14, z = 0.5Mass dependence M^B Redshift dependence $(1 + z)^C$

Conclusions

- σ_I is independent on M and $M_{\star} =>$ large-scale environments. *
- GIZMO-SIMBA has a negligible σ_I . *
- When $M_{\star} \gtrsim 10^{10} h^{-1} M_{\odot}$, MR relation strongly depends on the baryon models.
- When $M_{\star} \leq 10^{10} h^{-1} M_{\odot}$, MR relation can be fitted with 7 parameters.
- Apply MR relation selected by M_{\star} to different surveys/bands, once we know the $M_{\star} - \mathcal{M}$ relation.

