X-RAY SCALING RELATION OF GALAXY CLUSTERS

Qinxun Li

Clusters are among the most luminous x-ray sources in the sky. This X-ray emission comes from hot intracluster gas.

X-ray observations provide information on the amount, distribution, temperature and chemical composition of the Intracluster gas

MOTIVATION

CLUSTER COSMOLOGY

• The number of galaxy clusters above halo mass M_A can be predicted from halo mass function:

$$N(M_{\rm A}) = \frac{4\pi r_8^3}{3} \int_{M_{\rm A}}^{\infty} n(M, t_0) \,\mathrm{d}M$$
$$\approx \frac{2}{\sqrt{\pi}} \left(\frac{\delta_{\rm c}}{\sqrt{2}\sigma_8}\right)^{3/\beta} \int_{y_{\rm min}}^{\infty} y^{-3/\beta} \exp(-y^2) \,\mathrm{d}y,$$

- So, measuring halo mass of massive cluster can be a probe to HMF and cosmology
- X-ray observation is powerful to find clusters.

CLUSTER COSMOLOGY

CLUSTER COSMOLOGY

✓Advantages

✓ Disadvantages

- Clusters provide an efficient way of surveying a large volume of space
- Cluster distribution provides information about conditions in the early universe
- Clusters can be seen at great distances

- ✓ Their low space density makes clusters sparse tracers of the large scale structure
- Results may depend on the chosen cluster sample
- Redshifts of many clusters are still unmeasured

BARYONIC FEEDBACK

- Feedback heats ICM
- Feedback blows gas away
- Change the shape of scaling relation

I. THEORY

$$\rho_2 v_2 = \rho_1 v_1,$$

$$\rho_2 v_2^2 + P_2 = \rho_1 v_1^2 + P_1,$$

$$\frac{1}{2} v_2^2 + \frac{P_2}{\rho_2} + \mathscr{E}_2 = \frac{1}{2} v_1^2 + \frac{P_1}{\rho_1} + \mathscr{E}_1,$$

$$\frac{\rho_2}{\rho_1} = \frac{v_1}{v_2} = \left[\frac{1}{\widehat{M}_1^2} + \frac{\gamma - 1}{\gamma + 1}\left(1 - \frac{1}{\widehat{M}_1^2}\right)\right]^{-1},$$

 $\frac{P_2}{P_1} = \frac{2\gamma}{\gamma+1}\widehat{M}_1^2 - \frac{\gamma-1}{\gamma+1},$

$$\frac{T_2}{T_1} = \frac{P_2}{P_1} \frac{\rho_1}{\rho_2} = \frac{\gamma - 1}{\gamma + 1} \left[\frac{2}{\gamma + 1} \left(\gamma \widehat{M}_1^2 - \frac{1}{\widehat{M}_1^2} \right) + \frac{4\gamma}{\gamma - 1} - \frac{\gamma - 1}{\gamma + 1} \right],$$

*v*₁大于声速(激波后 方马赫数 *M̂*₁大于
1)时, 气体被压
缩、减速、加热

SELF-SIMILAR MODEL

Mon. Not. R. astr. Soc. (1986) 222, 323-345

Evolution and clustering of rich clusters

Nick Kaiser Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Accepted 1986 April 30. Received 1986 April 21

- Assume pure gravitational heating
- Prove that in this case,

Why hydrostatic equilibrium?

- The intracluster gas will respond to changes at a rate determined by the sound speed.
- The sound speed in an ideal monatomic gas is

$$v_{sound} \sim \sqrt{\frac{5k_BT}{3\mu m_H}}$$
(11)

where μ = mean molecular weight of gas and m_H = mass of proton

- The time for a sound wave to cross a cluster of diameter d is

$$t_{sound} \sim \frac{d}{v_{sound}} \sim 7 \times 10^8 \left(\frac{T}{10^8 K}\right)^{-1/2} \left(\frac{d}{1Mpc}\right)^{-1} years \tag{12}$$

- Because $t_{sound} \ll t_{cool}$ the gas will be in hydrostatic equilibrium (gas pressure balances gravity). For a spherical mass distribution,

$$\frac{1}{\rho_{gas}}\frac{dP}{dr} = -\frac{d\Phi}{dr} = -\frac{GM(r)}{r^2}$$
(13)

Because the gas is in hydrostatic equilibrium in the cluster potential well, its distribution maps the cluster's mass distribution.

X-RAY HALO MASS

Assuming that the intracluster gas is in hydrostatic equilibrium in the cluster potential well, the **total** cluster mass can be found:

$$\frac{1}{\rho_{gas}}\frac{dP}{dr} = \frac{d\phi}{dr} = -\frac{GM_{cl}(r)}{r^2}$$
(5)

Substituting the ideal gas law, $P = \rho k_b T / \mu m_H$ and solving for M(R)

$$M_{cl}(< R) = -\frac{k_b T_{gas}}{\mu m_H G} \left(\frac{\delta ln \rho_{gas}}{\delta lnr} + \frac{\delta ln T_{gas}}{\delta lnr} \right) \tag{6}$$

Note that M_{cl} depends sensitively on T_{gas} but weakly on ρ_{gas} . In principle, radial gradients in ρ_{gas} and T_{gas} are observable. In reality, temperature gradients are very difficult to detect.

A simplifying assumption is that the gas is **isothermal**, then

$$\frac{\delta ln T_{gas}}{\delta lnr} = 0 \qquad (7)$$

$$M(< R) = -\frac{k_b T_{gas}}{\mu m_H G} \left(\frac{\delta ln \rho_{gas}}{\delta lnr}\right) \tag{8}$$

DYNAMICAL HALO MASS

$$\frac{1}{2}M_{cl}\sigma^2 - \frac{\alpha G M_{cl}^2}{R} = 0$$

where α depends on the matter distribution

 $\alpha=3/5$ for a uniform sphere

 $\alpha \sim 1$ for typical profiles

This yields,

$$M_{cl} \sim 10^{15} M \odot \left(\frac{\sigma_{los}}{10^3 km/s}\right)^2 \left(\frac{R}{1Mpc}\right)$$

- Virial estimates indicate total cluster masses ${\rm M}_{cl} \sim 10^{13} \text{--} 10^{15}~{\rm M}\odot$

- Visible galaxies account for only \sim 5 - 10% of ${\rm M}_{cl}$

LENSING HALO MASS

Gravitational Lens Galaxy Cluster 0024+1654

PRC96-10 · ST Scl OPO · April 24, 1996 W.N. Colley (Princeton University), E. Turner (Princeton University), J.A. Tyson (AT&T Bell Labs) and NASA

II. OBSERVATION

M(T) RELATION: X-RAY MASS

Output Depend of thermal/dynamical state of the ICM

⁽⁸⁾ Cannot separate components along the line of sight.

All Sky Surveys (e.g. ROSAT) can
 provide large and homogeneous samples

M(T) RELATION: DYNAMICAL MASS

M(T) RELATION: X-RAY MASS

Dynamics of galaxies

© Depend on the dynamical state of the cluster galaxies (galaxies relaxes later than the ICM)

Reliable results depends on a large number of galaxy velocities over a large area (e.g. Czoske et al. 2002)

Can separate structures along the line of sight

XMM CLUSTER SURVEY

SDSS SHAPE CATALOG

SDSS DR7 footprint

Redshift distribution

LENSING SIGNAL

OUR CONSTRAINT

