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• Cosmology as the initial conditions and 
background.

• Long time-scale evolution from the dawn to 
present.

• Multi-scale coupling from LSS, galaxy clusters, 
galaxies, gas cloud/star/BHs, etc.

Galaxy Formation – a Complex Picture
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The Trade-off: Resolution Power and Simulation Volume

How do galaxies populate dark matter haloes? 1113

can resolve the dark matter haloes predicted to host even the faintest
known dwarf galaxies.

For each of the output dumps, friends-of-friends (FOF) groups
are identified in each simulation by linking together particles sep-
arated by less than 0.2 of the mean interparticle separation (Davis
et al. 1985). The SUBFIND algorithm (Springel et al. 2001) was then
applied to each FOF group in order to split it into a set of dis-
joint, self-bound subhaloes, which represent locally overdense and
dynamically stable subunits within the larger system. The main
subhalo is defined as the most massive self-bound subunit of an
FOF group and normally contains most of its mass. Merger trees
were then built which link each subhalo present in a given dump
to a unique descendent in the following dump. These allow us to
track the formation history of every halo/subhalo present at z =
0. We refer readers to Springel et al. (2005) and Boylan-Kolchin
et al. (2009) for a more detailed description of these simulations
and post-processing procedures.

In this work, we assume that both main subhaloes and satellite
subhaloes have galaxies at their centres, and that the stellar masses
of these galaxies are directly related to the maximum dark matter
mass ever attained by the subhalo during its evolution. We denote
this mass by Mhalo. In practice, this mass is usually the mass at z = 0
for main subhaloes and the mass just prior to accretion for satellite
subhaloes. Semi-analytic simulations show that for satellite systems
this latter mass is much more closely related to the stellar mass of
the central galaxy than is the z = 0 mass of the subhalo, because the
latter has often been very substantially reduced by tidal stripping
(Gao et al. 2004; Wang et al. 2006; Font et al. 2008). Vale & Ostriker
(2004), Conroy et al. (2006) and Berrier et al. (2006) present general
plausibility arguments for such an assumption rather than studying
any specific galaxy formation model. We thus need to estimate the
abundance of (sub)haloes in the MSs as a function of this Mhalo.

For each FOF group, we define the centre as the minimum of the
gravitational potential well, and we define the virial radius, Rvir, as
the radius that encloses a mean overdensity of 200 times the critical
value. The mass within Rvir is then defined as the virial mass:

Mhalo = 100
G

H 2(z)R3
vir. (1)

We define Mhalo for a main subhalo to be its current virial mass,
and for a satellite subhalo to be its virial mass immediately prior
to accretion on to a larger system, i.e. its virial mass immediately
before it last switches from being a main subhalo to a satellite
subhalo. Hereafter, we refer to both main subhaloes and satellite
subhaloes as ‘haloes’, and we refer to Mhalo defined in this way as
the ‘halo mass’.

Fig. 1 shows halo mass functions for the two MSs at z = 0.
Black triangles refer to the MS and red dots to the MS-II. The two
simulations agree well above 1012.3 M⊙ but below this threshold,
the MS lies progressively below the MS-II. This is due to resolution
effects, which set in at substantially higher masses than for the
FOF halo mass function in fig. 9 of Boylan-Kolchin et al. (2009)
because of the inclusion of satellite subhaloes. These can fall below
the resolution of the MS at z = 0 yet still be relatively massive at
the time of infall. In the following, we combine the part of the MS
mass function with Mhalo > 1.9 × 1012 M⊙ with the part from the
MS-II with Mhalo < 1.9 × 1012 M⊙ in order to represent the overall
dark halo mass function as well as possible. Based on the deviations
between the two simulations visible in Fig. 1, we estimate that the
resulting function should be accurate to better than about 10 per cent
from 1010 M⊙ up to 1015 M⊙. This will turn out to cover the full
halo mass range of relevance for real galaxies.

Figure 1. Dark matter halo mass functions at z = 0 where ‘halo’ is defined
to include both main subhaloes and satellite subhaloes. Halo mass, Mhalo, is
defined as the current virial mass for main subhaloes and as the virial mass
immediately prior to accretion for satellite subhaloes. In both cases, this
is normally the maximum mass attained over the subhalo’s history. Black
triangles are for the MS and red dots are for the MS-II. Poisson error bars
based on halo counts are shown for both simulations.

3 G A L A X Y FO R M AT I O N E F F I C I E N C Y

3.1 Connecting Galaxies to dark matter haloes

We connect dark halo mass Mhalo to the stellar mass of the cen-
tral galaxy by assuming a one-to-one and monotonic relationship
between the two. In practice, if the number density of dark matter
haloes with mass exceeding Mhalo matches the number density of
galaxies with stellar mass exceeding M∗,

n(> Mhalo) = n(> M∗), (2)

then we assume galaxies of stellar mass M∗ to reside at the centre
of dark matter (sub)haloes of mass Mhalo.

To derive the relation between Mhalo and M∗, we need to combine
the halo mass function of Fig. 1 with an equally precise observed
stellar mass function for galaxies. We take the recent measure-
ment presented by Li & White (2009). This is based on a com-
plete and uniform sample of almost half a million galaxies from
the SDSS/DR7 (York et al. 2000; Abazajian et al. 2009). This ex-
tends over almost four orders of magnitude in stellar mass (108–
1011.7 M⊙) with very small statistical errors. The main residual un-
certainty comes from possible systematic errors in the determination
of stellar masses from the SDSS photometry. Here we convert from
masses based on SDSS r-band Petrosian luminosities, as used by
Li & White (2009), to masses based on SDSS r-band ‘model’ lu-
minosities. The latter are generally thought to give a better estimate
of the total luminosity of galaxies. This conversion is discussed in
detail in Appendix A, which also gives a modified version of the
fitting formula of Li & White (2009) which represents this ‘total
stellar mass’ function. The correction increases stellar masses by
about 9 per cent on average. If we leave aside uncertainties in the
stellar initial mass function (IMF) then results in Appendix A and
in the appendices of Li & White (2009) suggest that the remaining
systematic uncertainty in the stellar mass functions are of the order
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MS and MS-II runs – halo abundances and galaxy correlations

DMO simulations are always performed in finite volumes with finite 
resolutions
• Good statistics require large simulation volume.
• Precise modeling of small/faint objects requires fine resolution.

1116 Q. Guo et al.

1.42+1.14
−0.54 (Smith et al. 2007), 0.5–1.5 (Battaglia et al. 2005; Dehnen,

McLaughlin & Sachania 2006) and 1.0+0.3
−0.2 (Xue et al. 2008). These

are consistent with the values implied by our abundance matching,
though some are at the lower end of the permitted range even when
the M∗–Mhalo relation is allowed to have maximal scatter.

M31 appears to have a larger stellar mass than the Milky Way,
consistent with its larger maximum rotation velocity, and this trans-
lates into a larger inferred halo mass Mhalo = 3.0 × 1012 M⊙. It is
interesting that the sum of the halo masses estimated for M31 and
the Galaxy from our ‘zero-scatter’ abundance matching is close to
the best estimate of the same quantity [Mhalo(MW) + Mhalo(M31) =
5.3 × 1012 M⊙] which Li & White (2008) obtained from a !CDM-
calibrated timing argument applied to the relative orbit of the two
galaxies. Note, however, that if we allow maximal scatter in the
M∗–Mhalo relation, then the Milky Way’s halo mass could be as
low as the values found in other recent MW analyses, and the sum
Mhalo(MW) + Mhalo(M31) would still not violate the 90 per cent
confidence range quoted by Li & White (2008). In this case, the
Milky Way’s halo would, of course, be substantially less massive
than those of typical galaxies of similar stellar mass.

The other Local Group Galaxies listed in Table 1 are all predicted
to have (maximum past) halo masses at least a factor of 10 smaller
than those of the two giants. As a result, they are likely to have
caused relatively little perturbation to the orbital dynamics of the
main binary system. The brightest of the satellites are nevertheless
predicted to have sufficiently massive haloes that dynamical friction
may have modified their orbits. In addition, all of the galaxies show
evidence for tidal truncation (M32), tidal distortion (NGC205, M33)
or associated tidal streams (LMC, SMC, M33), so it is likely that
their current halo masses are smaller than the maximum values
quoted in Table 1.

3.4 Stellar mass autocorrelations

In addition to estimating the stellar mass function of galaxies for
the SDSS/DR7, Li & White (2009) also studied the clustering of
stellar mass using the same galaxy sample. This was quantified
by the projected autocorrelation function of stellar mass, w∗

p (rp).
On scales larger than individual galaxies, w∗

p(rp) can be estimated
with high accuracy over about three orders of magnitude in rp

and is remarkably well described by a single power law. Li &
White (2009) showed that this behaviour is approximately, but not
perfectly reproduced by existing galaxy formation simulations.

In Fig. 4, we show the predictions for w∗
p(rp) which result if

(sub)haloes in the MS and MS-II (dashed and solid lines, respec-
tively) are populated with galaxies according to the M∗–Mhalo rela-
tion of Fig. 2. We compare these estimates to the SDSS/DR7 results
of Li & White (2009). Over the range 20 kpc < rp < 20 Mpc, the
MS-II prediction is in good agreement with the SDSS data. The MS
prediction converges to the MS-II on scales larger than ∼2 Mpc, but
is significantly too low on smaller scales, becoming roughly con-
stant for rp < 100 kpc. This reflects the lower resolution of the MS.
As noted above, it underpredicts (sub)halo abundances for Mhalo <

1012 M⊙ because many of these correspond to satellite subhaloes
which have been stripped to masses below the MS resolution limit.
The objects missed are primarily in the inner regions of massive
haloes, so their absence results in a depression of small-scale clus-
tering. In semi-analytic galaxy formation simulations based on the
MS, this effect is addressed by explicitly following ‘orphan’ galax-
ies from the time their subhaloes disrupt until the time that the code
determines that they should themselves disrupt or merge into the

Figure 4. The projected stellar mass autocorrelation function in the
SDSS/DR7 as measured by Li & White (2009) is plotted as triangles with
error bars and is compared to the result obtained if z = 0 (sub)haloes in
the MS (dashed line) and the MS-II (solid line) are populated with galaxies
according to the M∗–Mhalo relation of Fig. 2.

central galaxy (see e.g. Springel et al. 2005; Croton et al. 2006).
This effect is negligible in MS-II since, as noted above, the subhalo
samples are essentially complete down to Mhalo values that are small
enough (∼1010 M⊙) that their galaxies account for almost all stars.
Thus, the excellent agreement between MS-II and the SDSS data
provides a powerful consistency check on the general framework
explored in this paper.

3.5 Galaxy formation efficiency

Given the relation between halo mass and stellar mass, we can define
a galaxy formation efficiency as the fraction of all baryons nomi-
nally associated with the halo (calculated as the universal baryon
fraction times the halo mass) which are locked into stars. Thus,

Efficiency = M∗

Mhalo
× "m

"b
= 0.17 × M∗

Mhalo
. (4)

We show this galaxy formation efficiency as a function of dark
matter halo mass in Fig. 5. It peaks at around 20 per cent in haloes
with Mhalo ∼ 6 × 1011 M⊙, somewhat less than the halo mass
of the Milky Way. Similar numbers have previously been derived
from analogous arguments by Mandelbaum et al. (2006) and Baldry
et al. (2008), among others. These low efficiencies must be matched
by galaxy formation simulations if these are to provide a realistic
description of the formation of real galaxies. In fact, however, as
shown by the coloured symbols in Fig. 5, most recent simulations of
the formation of galaxies of Milky Way mass convert 25–60 per cent
of the available baryons into stars (Okamoto et al. 2005; Governato
et al. 2007; Scannapieco et al. 2009). The efficiency in Abadi et al.
(2003) is even higher, due to these authors’ neglect of SN feedback.
Cyan dots show results of a survey of baryonic physics parameter
space by Piontek & Steinmetz (2009). Several of their models do
show formation efficiencies as low as required to match the SDSS
stellar mass function in a !CDM universe, but the typical value is
around 35 per cent, almost twice as large as required.

Galaxy formation efficiency drops very rapidly towards both
higher and lower mass. In galaxy groups of mass 1013 M⊙, only
6 per cent of the total baryons can condense to the centre and form

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 404, 1111–1120

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/404/3/1111/1048568 by guest on 05 April 2021

MS

MS II



tim
e

𝒃𝟏
𝒃𝟐

𝒃𝟑
𝒃𝟒

Host halo
(Group of subhalos )

Central subhalo

Satellite subhalo

Missed satellite subhalo
(orphan or type 2 galaxy)

Missed central subhalo

Missing-Subhalo Problem for Halo-based Models

In a real application of galaxy modeling
• The lower limit of sample size (simulation 

volume) is determined by the statistical target.
• The upper limit of CPU hours are detemined by 

the fundings at hand.
• Resolution upper limit = max CPU hours / min 

sample size.

Something that is missed with limited resolution 
power
• The assembly history of a central subhalo at 

high-z is missed, when its halo mass is below 
the resolution limit.

• The dynamic evolution of a satellite subhalo is 
missed, after it is disrupted numerically.

A example subhalo merger tree

For ELUCID, M!"#$,&'( = 10)*ℎ+)𝑀⨀
For TNG100-1-Dark, M!"#$,&'( = 2×10-ℎ+)𝑀⨀



The Method: Learn From a High-resolution Simulation to Extend a Low-resolution Simulation

??

A ELUCID Branch

A (closely matched)
TNGDark Branch

A Extended-ELUCID (ELUCID+) Branch

A nearest-neighbor match 
using (𝑀./0 , log(1 + 𝑧0123))

The extension of central assembly history:



Extended subhalo mass functions for satellites
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Figure 3. Mass assembly histories of central subhalos at I = 0 in different simulations. Curves are shown with different offsets for clarity. The leftmost panel
shows the average histories of subhalos in three bins of "halo,z=0/( ⌘�1M� ) , indicated above each bunch of curves. Green, blue, red and black lines are
mean values from TNG, ELUCID, ELUCID+ and TNGDark, respectively, with black errorbars and blue shaded areas indicating the corresponding standard
deviations among branches. The right three panels show the assembly histories of individual subhalos randomly selected in three bins of "halo,z=0/( ⌘�1M� ) ,
respectively, indicated at the top of the panels. For each subhalo, blue line shows its assembly history before the central-stage completion, which is truncated near
the resolution limit of ELUCID. The red line shows the result after extension, which smoothly continues to the mass limit defined by the reference simulation,
TNGDark.

of the ratio "inf,sat/"halo,host for ELUCID is shifted towards higher
values of the ratio. Finally, the shift of the PDF of Iinf towards smaller
values in ELUCID is a result of the time integration of numerical
loss. Unlike "inf,sat/"halo,host, the PDF of "inf,sat/"halo,cent,inf
for ELUCID shows no significant difference from that for TNGDark.
This is a coincidence produced by the left-shifted PDF of Iinf , the
right-shifted PDF of "inf,sat/"halo,host, and the positive correlation
between Iinf and "inf,sat/"halo,cent,inf .

The 2-D marginal distributions in Fig. 4 present more demanding
tests on satellite properties predicted by ELUCID. The discrepancy
between ELUCID and TNGDark is even worse in these distributions.
Indeed, none of these panels shows consistent contours between the
two simulations. This discrepancy indicates that a halo-based galaxy
formation model applied to ELUCID will not be able to predict
reliably the spatial distribution of satellite galaxies and the joint
distribution between spatial positions and other properties of satellite
galaxies.

Thus, extensions of the satellite parts of subhalo merger trees are
clearly needed by ELUCID. To this end, we separate the difference
between ELUCID and TNGDark in the joint distribution of satellite
properties into two parts. In the first part, the difference is the am-
plitude of the distribution function caused by the inadequate number
of satellites resolved by ELUCID up to the epoch in question. In
the second, the difference is the shape of the distribution function
caused by the dependency of artificial disruption on other satellite
properties. The two parts of the difference are corrected, separately,
by two steps of our algorithm, the satellite-stage completion (§3.2.3)
and the phase-space assignment (§3.2.4).

The red histograms and contours labeled as ELUCID+ in Fig. 4
show the 1-D and 2-D marginal PDFs, respectively, of satellite prop-
erties after the application of the extension algorithm. In the 1-D
panels, the discrepancy seen between ELUCID and TNGDark is
completely absent between ELUCID+ and TNGDark. The K-S statis-
tics between them in all panels are now below 0.1, indicating small

difference between the two sets of the data after the amendment us-
ing the extension algorithm. The consistency between ELUCID and
TNGDark in 2-D distributions is also improved significantly after the
amendment, as can be seen from the similarity in contours between
ELUCID+ and TNGDark. Remarkably, in the space of each pair of
variables considered here, ELUCID+ follows TNGDark closely even
in their 90% contours. The angular distribution, as represented by
panels showing pairs that contain \r,lf , is also well recovered, even
though we only used the radial distance, Alf , as the quantity to match
in the conditional abundance matching step. This is at least partly
because of the correlation between \r,lf and other conditioning vari-
ables. Although Fig. 4 shows only a specific host halo mass range,
our tests showed that the recovery of the distribution of satellite prop-
erties in all other halo mass ranges is as good as or even better than
the results presented here. Our tests also showed that the algorithm
performs equally well for halos identifies at I > 0 (see Fig. A2 for an
example). At high redshift (I & 4), the sample size of massive halos
("halo,host & 1012 ⌘�1M�) in TNGDark is too small to be robustly
compared with ELUCID for the joint distribution. In this case, the
split of the full set of satellite properties into conditioning and con-
ditioned sets, and the lower bounds we impose on #min,cell partition
and #min,cell match in partitioning the feature space and matching
cells, respectively (see §3.2.4), are the keys to suppressing the cos-
mic variance and to achieving a robust assignment of phase-space
coordinates.

4.3 Summary Statistics of the Subhalo Population

The recovery of the joint distribution in space of high-dimensionality
indicates that other statistical properties of the subhalo population
are also recovered. For completeness, Fig. 5 shows four statistical
measurements that are commonly used in literature. The first row of
Fig. 5 shows the number density profile, d# , as a function of the
halo-centric distance A measured relative to the central subhalo and

MNRAS 000, 1–22 (2021)
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A nearest-neighbor match using
(𝑧./0 , 𝑀4561,./0, 
mass ratio, 
orbital angular momentum)
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(closely matched)
TNGDark Branch Extended-ELUCID (ELUCID+) Branch

The Method: Learn From a High-resolution Simulation to Extend a Low-resolution Simulation
The extension of satellite dynamic evolution



Abundance of the Extended Satellite Population
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Table 1. Cosmologies and simulation parameters of simulations used in this paper. Box size !box, number of resolution units #resolution, dark matter particle
mass <dark matter, and target baryon mass <baryon are listed in different columns. #resolution in TNG is the total number of dark matter particles and the initial
number of gas cells. During the run, gas cells are refined or de-refined such that their mass is kept within a factor of 2 of <baryon. #resolution in TNGDark and
ELUCID is the number of dark matter particles.

Simulation Cosmology !box
[ ⌘�1cMpc]

#resolution <dark matter
[ ⌘�1M� ]

<baryon
[ ⌘�1M� ]

TNG Planck15 (Ade et al. 2016): ⌘ = 0.6774, ⌦⇤,0 = 0.6911, ⌦",0 = 0.3089,
⌦⌫,0 = 0.0486, ⌦ ,0 = 0, f8 = 0.8159, =B = 0.9667 75 2 ⇥ 18203 5.1 ⇥ 106 9.4 ⇥ 105

TNGDark 18203 6.0 ⇥ 106 -

ELUCID WMAP5 (Dunkley et al. 2009): ⌘ = 0.72, ⌦⇤,0 = 0.742, ⌦",0 = 0.258,
⌦⌫,0 = 0.044, ⌦ ,0 = 0, f8 = 0.80, =B = 0.96

500 30723 3.08 ⇥ 108 -

Figure 1. Infall mass functions of satellite subhalos selected at I = 0 in the
ELUCID simulation. The blue solid line (labeled “ELUCID”) is the result
using subhalos resolved by the original ELUCID simulation. The black solid
line (labeled “ELUCID+”) is the result obtained from amended merger trees.
For reference, the red solid line (labeled “Extension”) is the result for subhalos
generated by the extension algorithm. A small fraction of the resolved subha-
los in ELUCID is moved to “Extension” to ensure a consistent halo-centric
radial distribution with the high-resolution simulation, TNGDark, and the
amount is the difference between the dash line (before the move) and the solid
line (after the move). See §3.3 for a detailed description. The mass functions
are multiplied by "2

inf for clarity. Error bars and shaded areas indicate the
standard deviations computed from 50 bootstrap samples, which are too small
to see owing to the large sample size of ELUCID.

Table 3 summarizes the notations in the description of the specific
case of using TNGDark to amend ELUCID merger trees.

3.1 Outline of the Algorithm

The extension algorithm is designed to work on all subhalo merger
trees in a low-resolution simulation, S, by learning from another high-
resolution simulation, S0. The goal is that, for any central subhalo
identified in S, (i) its mass assembly history is extended to higher
redshift with a mass resolution similar to that of S0, and (ii) its lifetime
after infall is extended to be consistent with that expected from S0.
Note that we cannot create a subhalo whose mass is always below the
resolution limit of (, so that it is not identifiable in (. The algorithm
consists of the following main steps:
(i) Tree decomposition: each subhalo merger tree in ( or (0 is de-

composed into disjoint branches. These branches will be used as
pieces to complete trees of subhalos in both central and satellite
stages described in the following two steps.

(ii) Central-stage completion: the mass assembly history (MAH) of
any central subhalo, defined as the set of halo mass values in the
main branch of the subhalo merger tree rooted in this subhalo, is
completed down to the same mass limit as S0. With this step, the
mass assembly histories of all central subhalos in ( are extended
well below the mass limit of S, so that empirical models applied
to them can trace star formation in a galaxy to high redshift when
the amount of stars formed in galaxy is insignificant. This step is
decoupled from the next two steps, so that it can be skipped if the
MAH of a central subhalo does not need to be extended.

(iii) Satellite-stage completion: the lifetime of a subhalo in ( after
the infall is extended so that it is not artificially destroyed due
to the limited resolution of (. The links of subhalos in merger
trees are updated to reflect the addition of subhalos generated by
the extension. With this step, the number of satellite subhalos
in a host halo is similar to that expected in the high-resolution
simulation. Thus, empirical models applied to ( will be able to
describe the satellite population conditioned on host halos, such as
the conditional galaxy stellar mass functions (CGSMFs), satellite
density profiles, and the one-halo terms of two-point correlation
functions (TPCFs).

(iv) Assignment of phase-space coordinates to satellite subhalos: po-
sitions and velocities are assigned to all the satellite subhalos,
both the original population and the population generated by the
extension algorithm. In this step, subhalo properties, such as spa-
tial position, velocity, and various properties at the time of infall,
are required to be statistically recovered. Phase-space properties
of satellite subhalos that are resolvable by S are kept unchanged
whenever possible. Properties of host halos, such as their shapes
and orientations, are also preserved whenever possible. With this
strategy, the algorithm retains all reliable information from the
original simulation, and perform extensions only when necessary.

3.2 Details of the Algorithm

3.2.1 Tree Decomposition

In the tree decomposition step, we aim to split each subhalo merger
tree, ) , into a set of disjoint branches {⌫8}#⌫8=1 , each consisting of
a chain of subhalos that form the main branch of a root subhalo,
A8 2 ⌫8 . Here, #⌫ is the number of branches in ) , and [#⌫

8=1⌫8 = ) .
The decomposition starts from a forest � = {)} that initially contains
only the target tree ) , and proceeds through the following substeps:
(i) We arbitrarily take a tree, )8 2 �, out of the forest �, and we

denote the root subhalo of )8 as A8 .
(ii) We extract the main branch, ⌫8 , of A8 , out of )8 , and we add ⌫8

into the result set of branches.
(iii) The remaining subhalos in )8 form a set of sub-trees of )8 . We

add all these sub-trees back into �.

MNRAS 000, 1–22 (2021)

23

Figure A1. Infall mass functions of satellite subhalos in ELUCID. This figure is the same as Fig. 1, but for satellite subhalos selected at I = 1, 2, 3 and 5,
respectively.

MNRAS 000, 1–22 (2021)
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How to assign a phase-space coordinate to satellite?

ELUCID+ Branch

(x, v) ??

(x, v) ??

General Requirements:
• Recover the joint distribution p(x, v, infall mass, host mass, host halo 

shape, ...).
• Preserve as much information as possible from original simulation, 

instead of pure random sampling from the joint distribution.
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Figure 2. Marginal distributions of I = 0 ELUCID satellite subhalos in the projected spaces of properties that are used as the conditioning variables in the
phase-space assignment step (see Table 3 and §3.3 for details). Satellite subhalos that are resolved by ELUCID and created in the satellite-stage completion step
are both included. Each diagonal panel shows the 1-D distribution of a property. Each off-diagonal panel shows the distribution of a pair of properties. In each
diagonal panel, the black histogram shows the distribution of all satellite subhalos while a colored histogram show the distribution of subhalos in a cell found by
the CART tree. Only the biggest three cells are shown. The histograms are arbitrarily normalized for clarity. In each off-diagonal panel, the black thick solid, thin
solid and dotted lines are contours enclosing 50%, 75% and 90% of all satellite subhalos, respectively. Dots with the same color represent subhalos belonging
to the same cell. The biggest 10 cells are shown.

of variables. To this end, we transform the phase-space properties of
a satellite subhalo using the properties of its host halo, so that they are
scaled by the “local frame” defined by the host. By so doing, the host
properties are eliminated from the conditioning variable xsat,complete,
and the conditioned variable xsat,incomplete becomes dimensionless.
This is, effectively, a stacking method that first scales the properties
in different systems and then combines the scaled quantities to en-
hance the signal. This method has been used frequently in literature
to extract features from weak signals, such as images or spectra with
low signal-to-noise ratios.

For each host halo, we first compute its inertial tensor I using

I =
1
2
<p

’
8

�rp,i �r)p,i, (11)

where the summation is over all the #p dark matter particles belong-
ing to the halo, �rp,i = rp,i � rcom is the position vector of the 8-th
particle relative to the center of mass (COM), rcom = 1

#p

Õ
8 rp,i,

and <p is the mass of each particle. Then, we compute the eigenval-
ues, _8 , and eigenvectors, e8 , of the inertial tensor. We describe the
shape of the halo by the principal axes, 08 (8 = 1, 2, 3), of its inertial
ellipsoid:

08 =
p
_8 . (12)

The eigenvectors and the principal axes define the local frame of the
halo, to which we tranform the position, r, and velocity, v, of each
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The Method: Learn From a High-resolution Simulation to Extend a Low-resolution Simulation

Assign the phase-space coordinates with conditional abundance matching

p(x, v, infall mass, host mass, host halo shape, ...)
= p(infall mass, host mass, host halo shape, ...) p(x, v | infall mass, host mass, host halo shape, ...)

Completely resolved by ELUCID Partly missed by ELUCID

1. Seprate the joint distribution:

2. Learn the missed part from TNGDark:
p(x, v| infall mass, host mass, host halo shape, ...) is estimated in 
each “cell” of the conditioning variable (infall mass, host mass, 
host halo shape, ...).

3. In each cell, match each ELUCID-resolved 
satellite to a TNGDark one (in some predefined 
order), and remove them from the cell. 

ELUCID satellites in cells

4. Randomly match ELUCID-extended satellites to 
the remaining ones of TNGDark.
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Figure 7. Subhalo distributions in the real space of several example halos in ELUCID. Each panel shows the subhalos in one host halo whose mass,
"halo,host/( ⌘�1M� ) , is indicated in the top left corner of that panel. Black, gray and red dots represent central subhalo, satellite subhalos resolved by ELUCID,
and extended satellite subhalos, respectively. All subhalos with mass greater than 1010 ⌘�1M� are shown. Radius of a dot is proportional to the square root of
the subhalo infall mass, "inf . The numbers of simulated and extended satellite subhalos are separately indicated in the upper right corner of the panel. The
origin of each panel is the center of mass of the host halo, computed by using all the particles linked to it.

5 SUMMARY AND DISCUSSION

We develop a novel algorithm to extend subhalo merger trees in a
low-resolution simulation by conditionally matching them with trees
and subhalos obtained in a high-resolution simulation. The extension
enables a large DMO simulation to obtain a large set of trees for
statistical studies and, at the same time, to have sufficient resolution
for reliable implementations of (sub)halo-based models of galaxy
formation. The algorithm can be summarized briefly as follows:
(i) For a target low-resolution DMO simulation carried out in a large

volume, we find a high-resolution simulation run with a similar
cosmology. We build subhalo merger trees for both of them using
a similar method.

(ii) We extend the resolution of each target tree in the low-resolution
simulation by the four steps outlined §3.1 and detailed in §3.2. The
first step is to separate each tree into disjoint branches. Each branch
has a central stage, in which the subhalo is a central, and a satellite
stage, in which the subhalo is a satellite in a host halo. The second
is the central-stage completion of branches, where assembly his-
tories of central subhalos are extended to high I. The third is the

satellite-stage completion of branches, in which the lifetimes of
satellite subhalos are extended beyond the numerical disruptions
in the target simulation. The fourth step is to assign phase-space
coordinates (positions and velocities) to satellite subhalos through
abundance matching conditioned on cells found by a CART tree.

(iii) We make specific choices of quantities and parameters for the
extension algorithm, based on the data available and target prop-
erties to be recovered, and we instantiate each of the above four
steps using these choices.

We present various tests on the algorithm by extending subhalo
merger trees in ELUCID, a low-resolution target simulation of large
volume, with trees from TNGDark, a high-resolution reference sim-
ulation run in a smaller box. We compare the extended trees with the
original ones of ELUCID and with those from TNGDark. We also
check how well the properties of individual subhalos and subhalo
populations are recovered by our algorithm. Our main conclusions
are summarized as follows:

(i) Satellite subhalos created by the extension at I = 0 dominate
the low-mass end of the halo mass function near the resolution
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Two features of the extension as a result 
of the “information preservation” from 
the original simulation
1. Shape preserving (of the host halo).
2. Self-consistency (to the original 

simulation).

ELUCID example halos
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Figure 4. Marginal distributions of satellite subhalos in the projected spaces of several properties as indicated by legends of individual axes. Satellite subhalos in
host halos with "halo,host 2 [1012, 1013 ) ⌘�1M� at I = 0 are used in the plot. Each diagonal panel shows the 1-D distribution of a property. Each off-diagonal
panel shows the 2-D distribution of a pair of properties. The gray, blue, and red histograms or contours are the distributions of subhalos in TNGDark, ELUCID
and ELUCID+, respectively. In each off-diagonal panel, the thick solid, thin solid and dotted lines enclose 30%, 60% and 90% of subhalos, respectively.

scaled by the virial radius, 'halo,host, of the host halo. Results are
shown for satellite subhalos with different infall masses, "inf,sat, and
in host halos with different masses, "halo,host. From curves showing
TNGDark results, it is clear that the overall amplitude of d# is larger
for more massive host halos and for less massive satellites. HOD
models (e.g., Jing et al. 1998; Berlind & Weinberg 2002; Guo et al.
2015, 2016; Yuan et al. 2022b; Qin et al. 2022) are usually param-
eterized with this assumption. The profile decreases monotonically

with increasing halo-centric distance, which is usually modeled by
a double-power-law form, such as the NFW (Navarro et al. 1997)
profile. With limited resolution, the profiles revealed by the ELU-
CID simulation, as shown by blue curves, lack some of these critical
features. The profiles of ELUCID follow those of TNGDark at large
radii, but they start to bend down when approaching to inner regions
of host halos. For satellite subhalos with masses ⇠ 1010 ⌘�1M� , the
profiles start to deviate from those of TNGDark even at A ⇠ 'halo,host.
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Joint Distribution of Satellite Properties

• Bias has been totally removed from ELUCID w.r.t. 
TNGDark.

• Resulted ELUCID+ joint distribution perfectly matches 
that of TNGDark.
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Figure 5. Summary statistics for spatial distribution of subhalos at I = 0. In all panels, black, blue and red symbols are results from TNGDark, ELUCID and
ELUCID+, respectively. Green curves in the last row are results from the TNG hydro simulation to demonstrate the effects of baryonic processes. Errorbars
and shaded areas indicate the standard deviations around the corresponding mean values computed from 50 bootstrap samples. The first row shows the number
density profiles, d# , of satellite subhalos in host halos with different masses, "halo,host/( ⌘�1M� ) , indicated at the top of panels. For each given halo mass
range, satellite subhalos in three different infall mass ranges are shown by solid, dashed and dotted lines, respectively, and they are shown in an increasing 1dex
vertical offset for clarity. The second row shows the angular distributions of satellite subhalos (see Eq. 15 and texts around it for the definition of the position
polar angle \A ,lf ) in host halos with different masses, "halo,host/( ⌘�1M� ) , indicated at the top of panels. The K-S statistic is computed and indicated in the
upper left corner of each panel for the ELUCID (or ELUCID+) distribution with respect to the TNGDark distribution in the same panel. The third row shows
the distributions of axis ratios of halos with different masses, "halo,host/( ⌘�1M� ) , indicated at the top of panels. The axis ratio of each halo is computed by
using all subhalos (central and satellite) in this halo, weighted by their infall masses. The K-S statistics are also indicated in the upper left corner of each panel.
The fourth row shows the two-point auto-correlation functions of all subhalos (central and satellite) in subsamples with different infall masses, "inf/( ⌘�1M� ) ,
indicated at the top of each panel.
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Figure 6. Two-dimensional correlation functions b (Ap, Ac ) in redshift space for subhalos (central plus satellite) at I = 0. Three columns show the results for
halos with different infall masses, "inf/( ⌘�1M� ) , indicated in the top left corner of the panels in the first row. Black contours in all panels are obtained from
TNGDark. Red and blue contours in two rows are obtained from ELUCID and its extended version, ELUCID+, respectively.

from hydrodynamic simulations or by summary statistics of galaxies
from observations (Chen et al. in preparation). The pipeline can thus
be adapted to a wide set of halo-galaxy inter-connections underlying
the training data. Here, we choose the version of this model that is
trained by subhalos and galaxies from TNG, and we implement it to
different versions of subhalo merger trees. Because these implemen-
tations share the same halo-galaxy mapping, we are able to quantify
the difference in the predicted galaxy population caused by the dif-
ference in the subhalo population between the two implementations.
The results of two-point correlation function are shown by colored
curves in Fig. 8 for modeled galaxies of different stellar masses at
I = 0. For comparison, we also plot the correlation functions of
galaxies obtained from the TNG simulation selected in the same red-
shift and stellar mass ranges. The results can be interpreted as follows.
First, The correlation functions of modeled galaxies based on TNG
subhalos (green curves) are moderately different from those simu-
lated by TNG (green dots). This simply indicates that the empirical
model, implemented to trees that are consistent with the constraining
data, is both stable and accurate in reproducing galaxy clustering
statistics. The difference in the correlation function is negligible on
A > 1 ⌘�1Mpc for all galaxies, and smaller than ⇠ 0.3 dex for galax-
ies of intermediate stellar mass (⇠ 1010 ⌘�1M�) in inner regions of
host halos. Because such stellar masses are close to the characteristic
mass of the stellar mass function, so that different feedback processes
may affect the formation and evolution of these galaxies, an accurate
prediction of their stellar masses is challenging. Second, the correla-
tion functions of modeled galaxies based on TNGDark (black curves)
do not show any bias in comparison with those given by TNG. This
is a synergistic result of the facts that baryonic components have
only small effect on the correlation functions of subhalos, as seen
in the fourth row of Fig. 5, and that the empirical model is capa-

ble of reproducing galaxy clustering statistics from reliable subhalo
merger trees. Third, the correlation functions of modeled galaxies
based on ELUCID (blue curves) are significantly underestimated on
small scales and overestimated on large scales, in comparison with
TNG results. This is again expected and follows from the behavior of
correlation functions of subhalos shown in the fourth row of Fig. 5.
Finally, with the amended subhalo merger trees in ELUCID+ (red
curves), the small-scale bias in the galaxy correlation functions is
largely reduced. The difference with TNG is reduced to . 0.2 dex,
comparable to the uncertainty from the empirical model. Thus, with
a combination of robust statistics from ELUCID and the high res-
olution from TNGDark, the amended correlation functions can be
measured reliably over the entire range of A > 10�2 ⌘�1Mpc. Note
that on scales A . 10�1.5 ⌘�1Mpc, TNG-based correlation functions
are too noisy to be displayed.

Since our algorithm assigns various properties to the extended
subhalos in a statistically unbiased manner, (sub)halo-based galaxy
models that use secondary subhalo properties (in addition to mass
parameters) as inputs to predict galaxy properties can be applied to
the extended subhalo merger trees. For example, age-matching tech-
niques (Hearin & Watson 2013; Hearin et al. 2014; Meng et al. 2020;
Wang et al. 2022) rely on mass and formation time of individual sub-
halos as the main and secondary matching properties, respectively,
to assign galaxies with stellar mass and color (or star formation rate).
These models can capitalize on the secondary properties of subhalos
in our extended trees to make detailed predictions of the galaxy pop-
ulation using large N-body simulations. We will come back to this
in a forthcoming paper.
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Number density profile

Angular distribution in halos

Shape of halos

Two point correlation function

Redshift-space distortion pattern
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Figure 8. Real space correlation functions of I = 0 galaxies with different stellar masses indicated in the top right corner of each panel. These galaxies are
obtained by applying a halo-based empirical model adapter, MAHGIC, to four versions of subhalo merger trees. Green, black, blue and red solid curves are the
results of the empirical model implemented with subhalo merger trees in TNG, TNGDark, ELUCID and ELUCID+, respectively. Green dots are results of the
simulated galaxies from the TNG simulation. The first row shows the correlation functions b (A ) , and the second row shows the difference of each correlation
function with respect to ELUCID+ in the same range of stellar mass. The shaded areas and error bars represent the standard deviations computed from 50
boostrap samples.

limit (⇠ 1010 ⌘�1M� for ELUCID), and have a moderate effect,
⇠ 0.15 dex, at the high-mass end (see Fig. 1 and §3).

(ii) The MAHs of individual central subhalos are extended smoothly
to high redshift until the resolution limit of the reference simulation
is reached. The average of the extended MAHs over all central
subhalos matches accurately that of the reference simulation (see
Fig. 3 and §4.1). Thus, the extended subhalo mergers trees are not
only unbiased, but also cover early histories of their formation.

(iii) The joint distribution of various satellite properties, such as
phase-space coordinates and infall properties, is statistically recov-
ered by the extension. Critical summary statistics, such as density
profiles and angular distributions of satellites, the shape distri-
butions of host halos, the one-dimensional and two-dimensional
two-point correlation functions, are also improved significantly,
especially for low-mass subhalos (see Fig. 4, 5 and 6; §§4.2, 4.3
and 4.4).

(iv) The “shape-preserving” and “self-consistent” schemes used in
the algorithm can keep the information from the original target
simulation to a maximal extent. Thus, the extended subhalos have
properties and distributions that are consistent with resolved prop-
erties in the target simulation, such as orientations and shapes of
host halos, and phase-space distribution of subhalos (see Fig. 7
and §4.5).

(v) With the extended subhalos, a halo-based model of galaxy forma-
tion can produce satellite galaxies that are statistically unbiased
and maximally compliant to the original target simulation (see
examples in Fig. 8 and §4.6).

In comparison with other extension methods listed in §1, our ex-
tension method for the central MAHs is more precise than the EPS-
based method (Chen et al. 2019; Yung et al. 2022a,b), retains more
information from the original simulation than the brute-force joining
of extensions to root subhalos (Yung et al. 2022a,b), and produces
smoother transition at the joint redshifts than the joining method
that does not take into account subhalo formation time (Chen et al.
2019). For the extension of satellite subhalos, our method produces

phase-space coordinates that are correlated with subhalo- and host-
halo properties, such as infall properties, current host halo mass
and shape. This allows halo-based galaxy formation models to have
more input from the halo population than methods based on sim-
ple assumptions of density and velocity profiles (Yuan et al. 2020,
2022b,a). Our method is also more physically self-consistent than
particle-based assignments of phase-space coordinates (Cole et al.
2000; Lacey et al. 2016; Baugh et al. 2019; Henriques et al. 2015,
2020).

The particle-based assignment of phase-space coordinates, how-
ever, has an advantage that our algorithm does not: it can assign orbits
to satellites. A limitation of our current method is that it does not
track orbits for the extended satellites, as our conditional abundance
matching is performed separately for different snapshots. A possible
solution is to perform the conditional abundance matching for whole
merger trees instead of for individual subhalos. Unfortunately, tree
properties are complex, and it is unclear which and in which or-
der tree properties should be used in the matching (see Obreschkow
et al. 2020, for an example of defining a single entropy parameter to
characterize a tree). Thus, tree-based matching needs substantially
more training data from the reference simulation, and may eventually
lose its appeal of using high-resolution simulations of small volumes
as training data. Another solution is to use analytical approxima-
tions (see, e.g., the orbit-based semi-analytical methods developed
by Zentner et al. 2007; Jiang et al. 2021) to generate orbits. For the
method to work properly, it should not only retain information from
the target simulation to ensure self-consistency, but also be able to
reproduce joint distributions of satellite properties. Related tests are
yet to be done. We will explore these possibilities in the future.

ACKNOWLEDGEMENTS

YC is supported by China Postdoctoral Science Foundation (grant
No. 2022TQ0329). HYW is supported by the National Natural Sci-
ence Foundation of China (Nos. 12192224 and 11890693) and CAS

MNRAS 000, 1–22 (2021)

Halo to galaxy 
mappings with 

tunable parameters

Best-fit and prediction on  
galaxies and

ensemble of galaxies
Dark matter halos & 

merger trees

Large Scale
Environment

Assembly History

Internal P
ropertie

s

1 2 3



Summary

• An algorithm to extend subhalo merger trees is developed.
• The algorithm

• Learn from a high-resolution simulation.
• Complete the central and satellite assembly histories in any low-resolution DMO simulation.
• Generate central histories that are unbias and smooth.
• Recover the joint distribution of satellite properties with shape-preservation and self-

consistency features.
• Provide a more robust basis for the halo-based galaxy models.


