FABER-JACKSON AND BLACK HOLE SCALING RELATIONS AND THEIR CONNECTION WITH STAR FORMATION QUENCHING

01.19 2022 Hui Hong instructors: Huiyuan Wang, Houjun Mo

Background:

MaNGA: spatially resolved spectra data central galaxies (internal quenching processes)

Observations:

based on spatially resolved D4000: D4000>1.55 —>quenched spaxel; <1.55—> SF spaxel mean quenched fraction (\bar{f}_q) within 1.5 R_e

FQGs (fully quenched galaxies, red): $\bar{f}_q > 0.95$ PQGs (partially quenched galaxies, green): $0.05 \leq \bar{f}_q \leq 0.95$ FSGs (fully star-forming galaxies, blue): $\bar{f}_q < 0.05$

FQGs: tight relation ($M_* \propto \sigma_c^4$) —>Faber-Jackson relation

L-shape

 $\sigma_{\rm c}(M_*)$: central velocity dispersion predicted from fitting FJ relation log $\sigma_{\rm c}/\sigma_{\rm c}(M_*)$: distance to FJ relation in $\sigma_{\rm c} - M_*$ diagram along y-axis ($\sigma_{\rm c}$ direction)

PQGs: quenching happens from inner to outer

identify central quenched objects (CQOs)

- $\sigma_{\rm c}-M_{*}$ diagram for PQGs: deviate from FJ relation
- $\sigma_{\rm c} M_{\rm q}$ diagram for CQOs identified in PQGs: lie within FJ relation
- -> quenched systems (FQGs & CQOs) obey FJ relation

FSGs and PQGs: apparent gradients for σ_* profiles

FQGs and CQOs: similar, almost flat σ_* profiles -> dynamically hot from inner to outer

 $2 - \sigma$ diagram: distance to FJ relation for both $\sigma_{\rm c}$ and $\sigma_{\rm out}$ in $\sigma_{\rm c} - M_*$ diagram

FQGs & CQOs: small region (both $\sigma_{\rm c}$ and $\sigma_{\rm out}$ obey FJ relation, a entire dynamically hot systems)

PQGs: vertical belt (dynamically hot central: eg. bulges, outskirts vary from cold to hot) FSGs: vertical (similar as PQGs)+ horizontal branches (inner from cold to hot, cold outskirts)

Toy model:

energy released by BH accretion: $E_a = \epsilon M_{BH}c^2$, ϵ : mass-to-energy efficiency for BH energy coupled with ISM, driven gas outside the host galaxies:

$$\begin{split} M_{\rm gas} &= \frac{\epsilon f_{\rm cp} M_{\rm BH} c^2}{1/2 v_{\rm esp}^2} = \frac{2\epsilon f_{\rm cp} M_{\rm BH} c^2}{a^2 \sigma_{\rm c}^2} \\ f_{\rm c}: \text{ fraction of energy coupled with ISM, } v_{\rm esp}: \text{ escaping speed for gas within galaxy} \\ v_{\rm esp} &= a \sigma_{\rm c} \end{split}$$

 $f_{\rm e} = M_{\rm gas}/M_*$: total fraction of gas expelled from galaxy

$$M_{\rm BH} = \frac{a^2 f_{\rm e} M_* \sigma_{\rm c}^2}{2\epsilon f_{\rm cp} c^2} = \gamma M_* \sigma_{\rm c}^2, \ \gamma = a^2 f_{\rm e} / 2\epsilon f_{\rm cp} c^2$$
: calibration parameter

assumptions:

dynamically hot systems: accretion and feedback is efficient (cold system: gas has large angular momentum)

—> apply in quenched systems: FQGs & CQOs

Saglia+2016: dynamical BH measurement —> calibrate our γ

Graham+2022: dynamical BH measurement

 $M_{\rm BH} - M_*$: FQGs have good agreement with G22 E&ES/S0 (dynamically hot)

 $M_{\rm BH} - M_{\rm sph}$: CQOs deviate from G22, our CQOs are different from traditional bulges

Evolutionary tracks:

FQGs: small region, both inner and outer are dynamically hot

PQGs: vertical arrow, $\sigma_{\rm c}$ is large, $\sigma_{\rm out}$ increases

FSGs: horizontal arrow, $\sigma_{\rm c}$ increases, $\sigma_{\rm out}$ remains (central grows) vertical arrow, $\sigma_{\rm c}$ is large, $\sigma_{\rm out}$ increases

